Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.055
Filtrar
1.
J Photochem Photobiol B ; 252: 112866, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364711

RESUMO

Cyanobacteria are photosynthetic organisms and challenged by large number of stresses, especially by ultraviolet radiation (UVR). UVR primarily impacts lipids, proteins, DNA, photosynthetic performance, which lowers the fitness and production of cyanobacteria. UVR has a catastrophic effect on cyanobacterial cells and eventually leads to cell death. UVR tolerance in the Synechocystis was poorly studied. Therefore, we irradiated Synechocystis sp. PCC 6803 to varying hours of photosynthetically active radiations (PAR), PAR + UV-A (PA), and PAR + UV-A + UV-B (PAB) for 48 h. To study the tolerance of Synechocystis sp. PCC 6803 against different UVR. The study shows that Chl a and total carotenoids content increased up to 36 h in PAR and PA, after 36 h a decrease was observed. PC increased up to 4-fold in 48 h of PA irradiation compared to 12 h. Maximum increase in ROS was observed under 48 h PAB i.e., 5.8-fold. Flowcytometry (FCM) based analysis shows that 25% of cells do not give fluorescence of Chl a and H2DCFH. In case of cell viability 10% cells were found to be non-viable in 48 h of PAB irradiance compared to 12 h. From the above study it was found that FCM-based approaches would provide a better understanding of the variations that occurred within the Synechocystis cells compared to fluorescence microscopy-based methods.


Assuntos
Synechocystis , Raios Ultravioleta , Fotossíntese/efeitos da radiação , Microscopia de Fluorescência
2.
Photochem Photobiol Sci ; 23(2): 285-302, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38143251

RESUMO

Environmental variation has a significant impact on how organisms, including cyanobacteria, respond physiologically and biochemically. Salinity and ultraviolet radiation (UVR)-induced variations in the photopigments of the rice-field cyanobacterium Nostochopsis lobatus HKAR-21 and its photosynthetic performance was studied. We observed that excessive energy dissipation after UVR is mostly caused by Non-Photochemical Quenching (NPQ), whereas photochemical quenching is important for preventing photoinhibition. These findings suggest that ROS production may play an important role in the UVR-induced injury. To reduce ROS-induced oxidative stress, Nostochopsis lobatus HKAR-21 induces the effective antioxidant systems, which includes different antioxidant compounds like carotenoids and enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). The study indicates that Nostochopsis lobatus HKAR-21 exposed to photosynthetically active radiation + UV-A + UV-B (PAB) and PAB + NaCl (PABN) had significantly reduced photosynthetic efficiency. Furthermore, maximum ROS was detected in PAB exposed cyanobacterial cells. The induction of lipid peroxidation (LPO) has been investigated to evaluate the impact of UVR on the cyanobacterial membrane in addition to enzymatic defensive systems. The maximal LPO level was found in PABN treated cells. Based on the findings of this research, it was concluded that salinity and UVR had collegial effects on the major macromolecular components of the rice-field cyanobacterium Nostochopsis lobatus HKAR-21.


Assuntos
Cianobactérias , Oryza , Raios Ultravioleta , Antioxidantes/farmacologia , Oryza/efeitos da radiação , Cloreto de Sódio/farmacologia , Espécies Reativas de Oxigênio , Cianobactérias/metabolismo , Fotossíntese/efeitos da radiação , Superóxido Dismutase/metabolismo
3.
Sci Total Environ ; 899: 165657, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478928

RESUMO

Climate models predict decreasing precipitation and increasing air temperature, causing concern for the future of cocoa in the major producing regions worldwide. It has been suggested that shade could alleviate stress by reducing radiation intensity and conserving soil moisture, but few on-farm cocoa studies are testing this hypothesis. Here, for 33 months, we subjected twelve-year cocoa plants in Ghana to three levels of rainwater suppression (full rainwater, 1/3 rainwater suppression and 2/3 rainwater suppression) under full sun or 40 % uniform shade in a split plot design, monitoring soil moisture, physiological parameters, growth, and yield. Volumetric soil moisture (Ï´w) contents in the treatments ranged between 0.20 and 0.45 m3m-3 and increased under shade. Rainwater suppression decreased leaf water potentials (ѱw), reaching -1.5 MPa in full sun conditions indicating severe drought. Stomatal conductance (gs) was decreased under the full sun but was not affected by rainwater suppression, illustrating the limited control of water loss in cocoa plants. Although pre-dawn chlorophyll fluorescence (Fv/Fm) indicated photoinhibition, rates of photosynthesis (Pn) were highest in full sun. On the other hand, litter fall was highest in the full sun and under water stress, while diameter growth and carbon accumulation increased in the shade but was negatively affected by rainwater suppression. Abortion of fruits and damage to pods were high under shade, but dry bean yield was higher compared to under the full sun. The absence of interactions between shade treatments and rainwater suppression suggests that shade may improve the performance of cocoa, but not sufficiently to counteract the negative effects of water stress under field conditions.


Assuntos
Cacau , Árvores , Secas , Desidratação , Solo , Folhas de Planta/fisiologia , Fotossíntese/efeitos da radiação
4.
New Phytol ; 238(5): 1876-1888, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36908076

RESUMO

Browning and nutrient inputs from extreme rainfall, together with increased vertical mixing due to strong winds, are more frequent in coastal ecosystems; however, their interactive effects on phytoplankton are poorly understood. We conducted experiments to quantify how browning, together with different mixing speeds (fluctuating radiation), and a nutrient pulse alter primary productivity and photosynthetic efficiency in estuarine phytoplankton communities. Phytoplankton communities (grazers excluded) were exposed simultaneously to these drivers, and key photosynthetic targets were quantified: oxygen production, electron transport rates (ETRs), and carbon fixation immediately following collection and after a 2-d acclimation/adaptation period. Increasing mixing speeds in a turbid water column (e.g. browning) significantly decreased ETRs and carbon fixation in the short term. Acclimation/adaptation to this condition for 2 d resulted in an increase in nanoplanktonic diatoms and a community that was photosynthetically more efficient; however, this did not revert the decreasing trend in carbon fixation with increased mixing speed. The observed interactive effects (resulting from extreme rainfall and strong winds) may have profound implications in the trophodynamics of highly productive system such as the Southwest Atlantic Ocean due to changes in the size structure of the community and reduced productivity.


Assuntos
Diatomáceas , Fitoplâncton , Ecossistema , Vento , Fotossíntese/efeitos da radiação
5.
Biotechnol Prog ; 39(3): e3326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36700527

RESUMO

In nature, photosynthetic organisms are exposed to fluctuating light, and their physiological systems must adapt to this fluctuation. To maintain homeostasis, these organisms have a light fluctuation photoprotective mechanism, which functions in both photosystems and metabolism. Although the photoprotective mechanisms functioning in the photosystem have been studied, it is unclear how metabolism responds to light fluctuations within a few seconds. In the present study, we investigated the metabolic response of Synechocystis sp. PCC 6803 to light fluctuations using 13 C-metabolic flux analysis. The light intensity and duty ratio were adjusted such that the total number of photons or the light intensity during the low-light phase was equal. Light fluctuations affected cell growth and photosynthetic activity under the experimental conditions. However, metabolic flux distributions and cofactor production rates were not affected by the light fluctuations. Furthermore, the estimated ATP and NADPH production rates in the photosystems suggest that NADPH-consuming electron dissipation occurs under fluctuating light conditions. Although we focused on the water-water cycle as the electron dissipation path, no growth effect was observed in an flv3-disrupted strain under fluctuating light, suggesting that another path contributes to electron dissipation under these conditions.


Assuntos
Luz , Análise do Fluxo Metabólico , Fotossíntese , Synechocystis , Trifosfato de Adenosina/metabolismo , Clorofila/metabolismo , Transporte de Elétrons , Fluorescência , NADP/metabolismo , Oxigênio/metabolismo , Fenótipo , Fotossíntese/efeitos da radiação , Synechocystis/classificação , Synechocystis/crescimento & desenvolvimento , Synechocystis/metabolismo , Synechocystis/efeitos da radiação , Água/metabolismo
6.
Physiol Plant ; 175(1): e13844, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36539940

RESUMO

High irradiance and increased air temperature during extreme weather conditions affect tree crops and impact the yield and quality of fruits. Moreover, flowering and fruit set of Citrus are likely impaired by UV radiation and/or reduced carbon assimilation, which increase reactive oxygen species production and damage the leaf photosynthetic apparatus. Particle coating films sprayed on leaves have been offered as a way to minimize crop losses due to the climate change scenario, even though the extent of leaf protection is not characterized. We evaluated the use of two protective films on the oxidative stress and leaf photosynthesis of sweet orange trees exposed to varying daylight levels. Trees were maintained under full sun light, sprayed or not (control) with kaolin or calcium carbonate, and under reduced irradiance using either aluminum shade cloth 50% or anti-UV transparent plastic. Kaolin or calcium carbonate reflected 20%-30% of the incident light on the leaf surface compared to leaves not sprayed and under full sunlight. Leaves with coating exhibited improved CO2 assimilation and photosystem II efficiency, and lower leaf temperatures over time. In addition, the coating protected leaves against excess irradiance due to dissipation of excess energy into the photosynthetic apparatus (NPQt). Nonenzymatic mechanisms for UV protection, such as carotenoids, were higher in full sun control plants than in leaf-coated plants. Comparable responses were observed on trees maintained covered either by the cloth or the plastic film. Finally, we conclude that the use of suspension particles mitigates the harmful effects of excess UV irradiance and temperature in sweet orange trees.


Assuntos
Citrus , Árvores , Árvores/fisiologia , Temperatura , Caulim/farmacologia , Fotossíntese/efeitos da radiação , Folhas de Planta/fisiologia
7.
Proc Natl Acad Sci U S A ; 119(45): e2211789119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322730

RESUMO

UV radiation (UVR) has significant physiological effects on organisms living at or near the Earth's surface, yet the full suite of genes required for fitness of a photosynthetic organism in a UVR-rich environment remains unknown. This study reports a genome-wide fitness assessment of the genes that affect UVR tolerance under environmentally relevant UVR dosages in the model cyanobacterium Synechococcus elongatus PCC 7942. Our results highlight the importance of specific genes that encode proteins involved in DNA repair, glutathione synthesis, and the assembly and maintenance of photosystem II, as well as genes that encode hypothetical proteins and others without an obvious connection to canonical methods of UVR tolerance. Disruption of a gene that encodes a leucyl aminopeptidase (LAP) conferred the greatest UVR-specific decrease in fitness. Enzymatic assays demonstrated a strong pH-dependent affinity of the LAP for the dipeptide cysteinyl-glycine, suggesting an involvement in glutathione catabolism as a function of night-time cytosolic pH level. A low differential expression of the LAP gene under acute UVR exposure suggests that its relative importance would be overlooked in transcript-dependent screens. Subsequent experiments revealed a similar UVR-sensitivity phenotype in LAP knockouts of other organisms, indicating conservation of the functional role of LAPs in UVR tolerance.


Assuntos
Leucil Aminopeptidase , Raios Ultravioleta , Fotossíntese/efeitos da radiação , Reparo do DNA , Glutationa
8.
Nature ; 609(7928): 835-845, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045294

RESUMO

Phycobilisome (PBS) structures are elaborate antennae in cyanobacteria and red algae1,2. These large protein complexes capture incident sunlight and transfer the energy through a network of embedded pigment molecules called bilins to the photosynthetic reaction centres. However, light harvesting must also be balanced against the risks of photodamage. A known mode of photoprotection is mediated by orange carotenoid protein (OCP), which binds to PBS when light intensities are high to mediate photoprotective, non-photochemical quenching3-6. Here we use cryogenic electron microscopy to solve four structures of the 6.2 MDa PBS, with and without OCP bound, from the model cyanobacterium Synechocystis sp. PCC 6803. The structures contain a previously undescribed linker protein that binds to the membrane-facing side of PBS. For the unquenched PBS, the structures also reveal three different conformational states of the antenna, two previously unknown. The conformational states result from positional switching of two of the rods and may constitute a new mode of regulation of light harvesting. Only one of the three PBS conformations can bind to OCP, which suggests that not every PBS is equally susceptible to non-photochemical quenching. In the OCP-PBS complex, quenching is achieved through the binding of four 34 kDa OCPs organized as two dimers. The complex reveals the structure of the active form of OCP, in which an approximately 60 Å displacement of its regulatory carboxy terminal domain occurs. Finally, by combining our structure with spectroscopic properties7, we elucidate energy transfer pathways within PBS in both the quenched and light-harvesting states. Collectively, our results provide detailed insights into the biophysical underpinnings of the control of cyanobacterial light harvesting. The data also have implications for bioengineering PBS regulation in natural and artificial light-harvesting systems.


Assuntos
Ficobilissomas , Luz Solar , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transferência de Energia/efeitos da radiação , Fotossíntese/efeitos da radiação , Ficobilissomas/química , Ficobilissomas/metabolismo , Ficobilissomas/efeitos da radiação , Synechocystis/metabolismo , Synechocystis/efeitos da radiação
9.
Ecotoxicol Environ Saf ; 242: 113916, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35878498

RESUMO

The protective ozone layer is continually depleting owing to an increase in the levels of solar UV-B radiation, which has harmful effects on organisms. Algae in desert soil can resist UV-B radiation, but most research on the radiation resistance of desert algae has focused on cyanobacteria. In this study, we found that desert green algae, Chlorella sp., could maintain high photosynthetic activity under UV-B stress. To examine the tolerance mechanism of the desert green algae photosystem, we observed the physiological and transcriptome-level responses of Chlorella sp. to high doses of UV-B radiation. The results showed that the reactive oxygen species (ROS) content first increased and then decreased, while the malondialdehyde (MDA) content revealed no notable lipid peroxidation during the UV-B exposure period. These results suggested that Chlorella sp. may have strong system characteristics for scavenging ROS. The antioxidant enzyme system showed efficient alternate coordination, which exhibited a protective effect against enhanced UV-B radiation. DNA damage and the chlorophyll and soluble protein contents had no significant changes in the early irradiation stage; UV-B radiation did not induce extracellular polysaccharides (EPS) synthesis. Transcriptomic data revealed that a strong photosynthetic system, efficient DNA repair, and changes in the expression of genes encoding ribosomal protein (which aid in protein synthesis and improve resistance) are responsible for the high UV-B tolerance characteristics of Chlorella sp. In contrast, EPS synthesis was not the main pathway for UV-B resistance. Our results revealed the potential cell damage repair mechanisms within Chlorella sp. that were associated with high intensity UV-B stress, thereby providing insights into the underlying regulatory adaptations of desert green algae.


Assuntos
Chlorella , Chlorella/genética , Chlorella/metabolismo , Clorofila/metabolismo , Fotossíntese/efeitos da radiação , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta
10.
New Phytol ; 236(2): 538-546, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35832002

RESUMO

The current definition of photosynthetically active radiation includes only photons from 400 up to 700 nm, despite evidence of the synergistic interaction between far-red photons and shorter-wavelength photons. The synergy between far-red and shorter-wavelength photons has not been studied in sunlight under natural conditions. We used a filter to remove photons above 700 nm to quantify the effects on photosynthesis in diverse species under full sun, medium light intensity and vegetation shade. Far-red photons (701 to 750 nm) in sunlight are used efficiently for photosynthesis. This is especially important for leaves in vegetation shade, where far-red photons can be > 50% of the total incident photons between 400 and 750 nm. Far-red photons accounted for 24-25% of leaf gross photosynthesis (Pgross ) in a C3 and a C4 species when sunlight was filtered through a leaf, and 10-14% of leaf Pgross in a tree and an understory species in deep shade. Accounting for the photosynthetic activity of far-red photons is critical for accurate measurement and modeling of photosynthesis at single leaf, canopy and ecosystem scales. This, in turn, is crucial in understanding crop productivity, the global carbon cycle and climate change impacts on agriculture and ecosystems.


Assuntos
Ecossistema , Luz Solar , Luz , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos da radiação
11.
J Integr Plant Biol ; 64(9): 1821-1832, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35763422

RESUMO

Under natural conditions, photosynthesis has to be adjusted to fluctuating light intensities. Leaves exposed to high light dissipate excess light energy in form of heat at photosystem II (PSII) by a process called non-photochemical quenching (NPQ). Upon fast transition from light to shade, plants lose light energy by a relatively slow relaxation from photoprotection. Combined overexpression of violaxanthin de-epoxidase (VDE), PSII subunit S (PsbS) and zeaxanthin epoxidase (ZEP) in tobacco accelerates relaxation from photoprotection, and increases photosynthetic productivity. In Arabidopsis, expression of the same three genes (VPZ) resulted in a more rapid photoprotection but growth of the transgenic plants was impaired. Here we report on VPZ expressing potato plants grown under various light regimes. Similar to tobacco and Arabidopsis, induction and relaxation of NPQ was accelerated under all growth conditions tested, but did not cause an overall increased photosynthetic rate or growth of transgenic plants. Tuber yield of VPZ expressing plants was unaltered as compared to control plants under constant light conditions and even decreased under fluctuating light conditions. Under control conditions, levels of the phytohormone abscisic acid (ABA) were found to be elevated, indicating an increased violaxanthin availability in VPZ plants. However, the increased basal ABA levels did not improve drought tolerance of VPZ transgenic potato plants under greenhouse conditions. The failure to benefit from improved photoprotection is most likely caused by a reduced radiation use efficiency under high light conditions resulting from a too strong NPQ induction. Mitigating this negative effect in the future might help to improve photosynthetic performance in VPZ expressing potato plants.


Assuntos
Arabidopsis , Solanum tuberosum , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Luz , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , /metabolismo
12.
Sci Rep ; 12(1): 6924, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484294

RESUMO

To investigate the effects of extended light/dark (L/D) cycle period (relative to the diurnal L/D cycle) on lettuce and explore potential advantages of abnormal L/D cycles, butter leaf lettuce were grown in a plant factory with artificial light (PFAL) and exposed to mixed red (R) and blue (B) LED light with different L/D cycles that were respectively 16 h light/8 h dark (L16/D8, as control), L24/D12, L48/D24, L96/D48 and L120/D60. The results showed that, all the abnormal L/D cycles increased shoot dry weight (DW) of lettuce (by 34-83%) compared with the control, and lettuce DW increased with the L/D cycle period prolonged. The contents of soluble sugar and crude fiber in lettuce showed an overall upward trend with the length of L/D cycle extended, and the highest vitamin C content as well as low nitrate content were both detected in lettuce treated with L120/D60. The light use efficiency (LUE) and electric use efficiency (EUE) of lettuce reached the maximum (respectively 5.37% and 1.76%) under L120/D60 treatment and so were DW, Assimilation rate (A), RC/CS, ABS/CS, TRo/CS and DIo/CS, indicating that longer L/D cycle period was beneficial for the assimilation efficiency and dry matter accumulation in lettuce leaves. The highest shoot fresh weight (FW) and nitrate content detected in lettuce subjected to L24/D12 may be related to the vigorous growth of root, specific L/D cycle seemed to strengthen root growth and water absorption of lettuce. The openness level of RC in PSII (Ψo), ETo/CS, and PIabs were all the highest in lettuce treated with L24/D12, implying that slightly extending the L/D cycle period might promote the energy flowing to the final electron transfer chain. In general, irradiation modes with extended L/D cycle period had the potential to improve energy use efficiency and biomass of lettuce in PFAL. No obvious stress or injury was detected in lettuce subjected to prolonged L/D cycles in terms of plant growth and production. From the perspective of shoot FW, the optimal treatment in this study was L24/D12, while L120/D60 was the recommended treatment as regards of the energy use efficiency and nutritional quality.


Assuntos
Fotossíntese , Manteiga , Luz , Nitratos/análise , Fotossíntese/efeitos da radiação
13.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163669

RESUMO

Arabidopsis thaliana SYNAPTOTAGMIN 1 (AtSYT1) was shown to be involved in responses to different environmental and biotic stresses. We investigated gas exchange and chlorophyll a fluorescence in Arabidopsis wild-type (WT, ecotype Col-0) and atsyt1 mutant plants irrigated for 48 h with 150 mM NaCl. We found that salt stress significantly decreases net photosynthetic assimilation, effective photochemical quantum yield of photosystem II (ΦPSII), stomatal conductance and transpiration rate in both genotypes. Salt stress has a more severe impact on atsyt1 plants with increasing effect at higher illumination. Dark respiration, photochemical quenching (qP), non-photochemical quenching and ΦPSII measured at 750 µmol m-2 s-1 photosynthetic photon flux density were significantly affected by salt in both genotypes. However, differences between mutant and WT plants were recorded only for qP and ΦPSII. Decreased photosynthetic efficiency in atsyt1 under salt stress was accompanied by reduced chlorophyll and carotenoid and increased flavonol content in atsyt1 leaves. No differences in the abundance of key proteins participating in photosynthesis (except PsaC and PsbQ) and chlorophyll biosynthesis were found regardless of genotype or salt treatment. Microscopic analysis showed that irrigating plants with salt caused a partial closure of the stomata, and this effect was more pronounced in the mutant than in WT plants. The localization pattern of AtSYT1 was also altered by salt stress.


Assuntos
Arabidopsis/fisiologia , Fotossíntese/fisiologia , Estresse Salino/fisiologia , Sinaptotagmina I/deficiência , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Clorofila A/metabolismo , Fluorescência , Gases/metabolismo , Luz , Fotossíntese/efeitos da radiação , Pigmentos Biológicos/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Estresse Salino/efeitos da radiação , Sinaptotagmina I/metabolismo
14.
Biochem Biophys Res Commun ; 596: 97-103, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35121375

RESUMO

Reactive oxygen species (ROS) can both act as a poison causing cell death and important signaling molecules among various organisms. Photosynthetic organisms inevitably produce ROS, making the appropriate elimination of ROS an essential strategy for survival. Interestingly, the unicellular green alga Chlamydomonas reinhardtii expresses a mammalian form of thioredoxin reductase, TR1, which functions as a ROS scavenger in animal cells. To investigate the properties of TR1 in C. reinhardtii, we generated TR1 knockout strains using CRISPR/Cas9-based genome editing. We found a reduced tolerance to high-light and ROS stresses in the TR1 knockout strains compared to the parental strain. In addition, the regulation of phototactic orientation, known to be regulated by ROS, was affected in the knockout strains. These results suggest that TR1 contributes to a ROS-scavenging pathway in C. reinhardtii.


Assuntos
Proteínas de Algas/genética , Chlamydomonas reinhardtii/genética , Luz , Tolerância a Radiação/genética , Tiorredoxina Redutase 1/genética , Proteínas de Algas/metabolismo , Animais , Sistemas CRISPR-Cas , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/efeitos da radiação , Edição de Genes/métodos , Técnicas de Inativação de Genes , Peróxido de Hidrogênio/farmacologia , Mamíferos/genética , Mamíferos/metabolismo , Oxidantes/farmacologia , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Fototaxia/efeitos dos fármacos , Fototaxia/efeitos da radiação , RNA-Seq/métodos , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Redutase 1/metabolismo
15.
J Photochem Photobiol B ; 229: 112413, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35220016

RESUMO

Impressive progress in developing light-emitting diodes (LEDs) offers a new dimension for meeting agricultural and biological expectations. The present study addresses how tomato (Solanum lycopersicum) seedlings respond to the different spectral qualities of LEDs (white, red, blue, and blue + red). The light treatments in a wavelength-dependent manner contributed to the variations in biomass accumulation, morphology, and organogenesis pattern. Light quality epigenetically contributed to the transcriptional regulation of the histone deacetylase (HDA3) gene. The expression of WRKY53 transcription factor and gamma-aminobutyric acid transaminase (GABA-TP1) genes displayed a similar upward trend in response to the blue wavelength. On the contrary, the sole red light downregulated the WRKY53 and GABA-TP1 genes. The blue irradiation was associated with the upregulation in the glycolate oxidase (GLO2) and ribulose-1,5-bisphosphate carboxylase­oxygenase large subunit (rbcL) genes, while the red wavelength down-regulated the GLO2 and rbcL genes. Moreover, rbcL statistically correlated with GLO2, referring to the balanced regulation of photorespiration and the Calvin cycle. The blue wavelengths were more capable of improving the concentrations of photosynthetic pigments and proline. The seedlings grown under the white LEDs displayed the maximum activity of the catalase enzyme. The cultivation of tomato seedlings under the blue lights enhanced the activities of the superoxide dismutase and ascorbate peroxidase enzymes. The light treatments were associated with the variation in the nutritional status of K+ and Ca2+ in both leaves and roots. The presented findings and inferences support the potential contribution of WRKY53, HDA3, and GABA signaling in modulating plant responses to light quality.


Assuntos
Solanum lycopersicum , Histona Desacetilases , Luz , Solanum lycopersicum/genética , Fotossíntese/efeitos da radiação , Transaminases , Fatores de Transcrição , Ácido gama-Aminobutírico
16.
Cells ; 11(2)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053368

RESUMO

Fluctuating light is a typical light condition in nature and can cause selective photodamage to photosystem I (PSI). The sensitivity of PSI to fluctuating light is influenced by the amplitude of low/high light intensity. Tobacco mature leaves are tended to be horizontal to maximize the light absorption and photosynthesis, but young leaves are usually vertical to diminish the light absorption. Therefore, we tested the hypothesis that such regulation of the leaf angle in young leaves might protect PSI against photoinhibition under fluctuating light. We found that, upon a sudden increase in illumination, PSI was over-reduced in extreme young leaves but was oxidized in mature leaves. After fluctuating light treatment, such PSI over-reduction aggravated PSI photoinhibition in young leaves. Furthermore, the leaf angle was tightly correlated to the extent of PSI photoinhibition induced by fluctuating light. Therefore, vertical young leaves are more susceptible to PSI photoinhibition than horizontal mature leaves when exposed to the same fluctuating light. In young leaves, the vertical leaf angle decreased the light absorption and thus lowered the amplitude of low/high light intensity. Therefore, the regulation of the leaf angle was found for the first time as an important strategy used by young leaves to protect PSI against photoinhibition under fluctuating light. To our knowledge, we show here new insight into the photoprotection for PSI under fluctuating light in nature.


Assuntos
Luz , /efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Fotossíntese/efeitos da radiação
17.
Sci Rep ; 12(1): 257, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997114

RESUMO

Light-emitting diodes (LEDs) and high-pressure sodium lamps (HPS) are among the most commonly used light sources for plant cultivation. The objective of this study was to evaluate the effect of two controlled-environment production systems differing in light sources on growth, photosynthetic activity, and secondary metabolism of common buckwheat. We hypothesized that LED light with the majority of red and blue waves would increase physiological and biochemical parameters compared to sunlight supplemented with HPS lamps. The experiment was performed in a phytotronic chamber (LEDs) and in a greenhouse (solar radiation supplemented with HPS lamps as a control). The effects were analyzed at the flowering phase with biometric measurements, leaf chlorophyll index, the kinetics of chlorophyll a fluorescence, content of soluble carbohydrates and phenolics in the leaves. Applied LED light decreased the biomass but stimulated the production of phenolics compared to control plants. In control plants, a positive correlation between flavonoid content and energy dissipation from photosystem II (DIo/CSm) was found, while in plants under LEDs total pool of phenolic content correlated with this parameter and the quantum yield of electron transport (φ Ro and ψ Ro) was lower than that of the control, probably affecting buckwheat biomass.


Assuntos
Produção Agrícola , Produtos Agrícolas/efeitos da radiação , Fagopyrum/efeitos da radiação , Luz , Iluminação/instrumentação , Fotossíntese/efeitos da radiação , Metabolismo Secundário/efeitos da radiação , Biomassa , Clorofila A/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Cinética , Fenóis/metabolismo
18.
Sci Rep ; 12(1): 852, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039577

RESUMO

Light is one of the most important limiting factors for photosynthesis and the production of plants, especially in the regions where natural environmental conditions do not provide sufficient sunlight, and there is a great dependence on artificial lighting to grow plants and produce food. The influence of light intensity, quality, and photoperiod on photosynthetic pigments content and some biochemical and growth traits of cucumber seedlings grown under controlled conditions was investigated. An orthogonal design based on a combination of different light irradiances, ratio of LEDs and photoperiods was used. Treaments consisted of three light irradiance regimes (80, 100, and 150 µmol m-2 s-1) provided by light-emitting diodes (LEDs) of different ratios of red and blue (R:B) (30:70, 50:50, and 70:30) and three different photoperiods (10/14, 12/12, and 14/10 h). The white light was used as a control/reference. Plant height, hypocotyl length, stem diameter, leaf area, and soluble sugar content were highest when exposed to LM9 (150 µmol m-2 s-1; R70:B30; 12/12 h) light mode, while the lowest values for the above parameters were obtained under LM1 (80 µmol m-2 s-1; R30:B70; 10/14 h). Higher pigments contents (chlorophyll a, chlorophyll b, and carotenoid) were obtained when light regime LM9 (150 µmol m-2 s-1; R70:B30; 12/12 h) was applied. In general, cucumber seedlings grown under the LM9 regime showed a significant increase in growth as well as photosynthetic capacity. It seems that the content of photosynthetic pigments is the key factor responsible for the performance of cucumber seedlings grown under different lighting modes, compared to other traits studied. We recommend monitoring the content of chlorophyll a, b, and their ratio value when studying the light requirement of cucumber plants.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/efeitos da radiação , Luz , Iluminação/métodos , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Clorofila/metabolismo , Clorofila A/metabolismo , Cucumis sativus/metabolismo , Relação Dose-Resposta à Radiação , Fotoperíodo , Fotossíntese/efeitos da radiação , Pigmentos Biológicos/metabolismo , Plântula/metabolismo
19.
J Sci Food Agric ; 102(1): 299-311, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34091912

RESUMO

BACKGROUND: Stevia rebaudiana is a high value crop due to the strong commercial demand for its metabolites (steviol glycosides) but has limited geographical cultivation range. In non-native environments with different daylength and light quality, Stevia has low germination rates and early flowering resulting in lower biomass and poor yield of the desired metabolites. In this study, artificial lighting with light-emitting diodes (LEDs) was used to determine if different light quality within and outside of the photosynthetically active radiation (PAR) range can be used to improve germination rates and yields for production of steviol glycosides for the herbal supplement and food industry. RESULTS: Plants treated with red and blue light at an intensity of 130 µmol m-2  s-1 supplemented with 5% of UV-A light under a 16-h photoperiod produced the most desirable overall results with a high rate of germination, low percentage of early flowering, and high yields of dry leaf, stevioside and rebaudioside A, 175 days after planting. CONCLUSION: While red and blue light combinations are effective for plant growth, the use of supplemental non-PAR irradiation of UV-A wavelength significantly and desirably delayed flowering, enhanced germination, biomass, rebaudioside A and stevioside yields, while supplemental green light improved yield of biomass and rebaudioside A, but not stevioside. Overall, the combination of red, blue and UV-A light resulted in the best overall productivity for Stevia rebaudiana. © 2021 Society of Chemical Industry.


Assuntos
Flores/crescimento & desenvolvimento , Fotossíntese/efeitos da radiação , Sementes/efeitos da radiação , Stevia/crescimento & desenvolvimento , Biomassa , Diterpenos do Tipo Caurano/metabolismo , Flores/química , Flores/efeitos dos fármacos , Flores/metabolismo , Germinação , Glucosídeos/metabolismo , Luz , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Stevia/química , Stevia/metabolismo , Stevia/efeitos da radiação
20.
PLoS One ; 16(12): e0259562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34898615

RESUMO

Thickness of cotton fiber, referred to as fiber maturity, is a key determinant of fiber quality, lint yield, and textile performance. The cotton immature fiber (im) mutant has been used to study fiber maturity since its fiber is thinner than the wild type near isogeneic line (NIL), Texas Marker-1 (TM-1). The im phenotype is caused by a single recessive mutation of a pentatricopeptide repeat (PPR) gene that reduces the activity of mitochondrial complex I and up-regulates stress responsive genes. However, the mechanisms altering the stress responses in im mutant are not well understood. Thus, we characterized growth and gas exchange in im and TM-1 under no stress and also investigated their stress responses by comparing gas exchange and transcriptomic profiles under high temperature. Phenotypic differences were detected between the NILs in non-fiber tissues although less pronounced than the variation in fibers. At near optimum temperature (28±3°C), im maintained the same photosynthetic performance as TM-1 by means of greater stomatal conductance. In contrast, under high temperature stress (>34°C), im leaves reduced photosynthesis by decreasing the stomatal conductance disproportionately more than TM-1. Transcriptomic analyses showed that the genes involved in heat stress responses were differentially expressed between the NIL leaves. These results indicate that the im mutant previously reported to have low activity of mitochondrial complex I displays increased thermosensitivity by impacting stomatal conductance. They also support a notion that mitochondrial complex I activity is required for maintenance of optimal photosynthetic performance and acclimation of plants to high temperature stress. These findings may be useful in the future efforts to understand how physiological mechanisms play a role in determining cotton fiber maturity and may influence stress responses in other crops.


Assuntos
Gossypium/genética , Proteínas de Plantas/genética , Fibra de Algodão/análise , Complexo I de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Luz , Mutação , Fenótipo , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...